Matriks merupakan cabang ilmu aljabar yang memiliki peranan penting dalam kehidupan, salah satunya adalah menyederhanakan masalah persaingan dalam dunia bisnis. Adapun matriks yang di aplikasikan dalam dunia bisnis dikenal dengan matriks permainan. Dinamakan matriks permainan dikarenakan matriks merupakan gambaran persaingan yang di muat oleh teori permainan. Teori permainan diselesaikan dengan strategi campuran, diantaranya adalah cara dominan dan penggunaan rumus aljabar matriks. Kedua cara tersebut akan digunakan untuk menentukan nilai probabilitas dari setiap strategi para pemain. Adapun dalam penelitian ini akan mengetahui bagaimana aplikasi rumus aljabar matriks dalam teori permainan dan menghitung data dengan matriks pada teori permainan untuk menentukan strategi pemasaran optimal. Langkah-langkah dalam kajian ini adalah: (1) Mentransformasikan teori permainan dengan ke dalam model pemrograman linier. (2) Mencari solusi model pemrograman linier dengan menggunakan solusi suatu persamaan linier. (3) Menguraikan model pemrograman linier dalam bentuk matriks dengan konsep matriks dan determinan, yang mengacu pada model pemrograman linier teori permainan, sehingga di dapatkan rumus aljabar matriks untuk teori permainan. (4) Mengaplikasikan data yang diselesaikan dengan cara dominan dan rumus aljabar matriks. Hasil penelitian menunjukkan bahwa rumus aljabar matriks yang digunakan dalam pencarian probabilitas strategi pemain dalam teori permainan didapatkan dari menguraikan model pemrograman linier dengan konsep matriks dan determinan. Strategi optimal pemain berawal dari matriks permainan yang ditentukan titik sadelnya untuk kemudian diselesaikan dengan cara dominan dan aljabar matriks. Apabila nilai yang didapatkan dari perhitungan dengan aljabar matriks adalah positif, maka strategi adalah optimal.
Artikel Terkait:
Skripsi Matematika
- Download Skripsi Gratis Matematika: PENYELESAIAN PERSAMAAN REGRESI LINIER BERGANDA DENGAN PENDEKATAN METODE KUADRAT TERKECIL DAN METODE MATRIKS
- Download Skripsi Gratis Matematika: ANALISIS FUNGSI AKTIVASI JARINGAN SYARAF TIRUAN UNTUK MENDETEKSI KARAKTERISTIK BENTUK GELOMBANG SPEKTRA BABI DAN SAPI
- Download Skripsi Gratis Matematika: GENERALISASI FUNGSI AIRY SEBAGAI SOLUSI ANALITIK PERSAMAAN SCHRODINGER NONLINIER
- Download Skripsi Gratis Matematika: PENYELESAIAN SISTEM PERSAMAAN FUZZY NONLINIER DENGAN MENGGUNAKAN METODE STEEPEST DESCENT
- Download Skripsi Gratis Matematika: ESTIMASI PARAMETER MODEL REGRESI LINIER PADA DATA
- Download Skripsi Gratis Matematika: ANALISIS ALGORITMA METODE BOOTSTRAP DAN JACKKNIFE DALAM MENGESTIMASI PARAMETER REGRESI LINIER BERGANDA
- Download Skripsi Gratis Matematika: STUDI COPULA GUMBEL FAMILY 2-DIMENSI DALAM IDENTIFIKASI STRUKTUR DEPENDENSI
- Download Skripsi Gratis Matematika: DISKRETISASI MODEL LORENZ DENGAN ANALOGI PERSAMAAN BEDA
- Download Skripsi Gratis Matematika: LIMIT FUZZY DARI SUATU FUNGSI DI R+
- Download Skripsi Gratis Matematika: SIFAT HAMILTONIAN DAN HIPOHAMILTONIAN PADA GRAF PETERSEN DIPERUMUM (GPn,1 & GPn,2)
No comments:
Post a Comment